

Massendurchflussmesser (MFM, Mass Flow Meter) für Gase

- Hauptstrom-Gerät für Nenndurchflüsse von 20 l_N/min bis 1500 l_N/min; 1/4" bis 3/4"
- Hohe Genauigkeit
- Kurze Antwortzeit
- Optional Feldbus

Der Massendurchflussmesser Typ 8006 dient der Erfassung von Gasmassendurchsätzen. Mit ihm können Massendurchflüsse von Gasen unabhängig von Störeinflüssen (wie z.B. Druck- oder Temperaturschwankungen) erfasst werden. Der Sensor arbeitet nach dem thermischen Prinzip (Konstant-Temperatur-Anemometer). Dabei wird bei einem veränderlichen Massenstrom der Heizstrom im Heizelement so verändert, dass eine konstante Übertemperatur gehalten wird. Die Messung erfolgt im Hauptstrom und liefert ohne Korrekturen direkt den Massendurchfluss (siehe Beschreibung auf Seite 2). Der MFM Typ 8006 zeichnet sich aufgrund der Messung im Hauptstrom durch eine hohe Dynamik und geringe Verschmutzungsempfindlichkeit aus.

Er kann vielseitig als Durchflussmesser für Gase eingesetzt werden. Zur Parametrisierung und Diagnose steht die Software MassFlowCommunicator zur Verfügung.

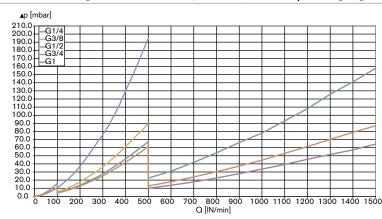
Typische Anwendungsgebiete sind Gasdurchflussmessungen in:

- der Wärmebehandlung
- Prüfständen
- der Verpackungstechnik
- der Nahrungs- und Getränkeindustrie
- der Umwelttechnik

Technische Daten	
$ \begin{array}{c} \textbf{Nenndurchflussbereich}^{1)} \\ (\textbf{Q}_{\text{Nenn}}) \end{array} $	20 bis 2500 l _N /min ²⁾ , Bezugsmedium N ₂ Siehe Tabelle auf Seite 2, höhere Durchflüsse auf Anfrage
Messspanne	1:50 ³⁾
Betriebsmedien	neutrale, nicht kontaminierte Gase, andere auf Anfrage
Kalibriermedium	Betriebsgas oder Luft mit Korrekturfunktion
Max. Betriebsdruck (Eingangs-/ Vordruck)	10 bar, bis zu 25 bar (N ₂ , Luft, Argon)
Gastemperatur	-10 bis +70°C (-10 bis +60°C bei Sauerstoff)
Umgebungstemperatur	-10 bis +45°C
Genauigkeit	±1,5% v.M. ±0,3% v.E.
(nach 15 min Aufwärmzeit)	(v.M. : vom Messwert; v.E. : vom Endwert)
Wiederholgenauigkeit	±0,1% v.E.
Antwortzeit (t _{95%})	<500 ms
Werkstoffe	
Grundblock	Aluminium (schwarz eloxiert) oder Edelstahl
Gehäuse	Aluminium (lackiert)
Dichtungen	FKM, EPDM

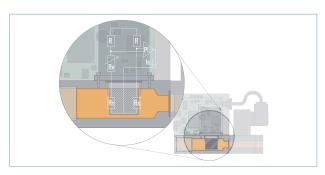
¹⁾Der Nenndurchfluss ist der größte kalibrierte und messbare Durchflusswert. Der Nenndurchflussbereich gibt den Bereich möglicher Nenndurchflusswerte an.

Leitungsanschluss	G 1/4, 3/8, 1/2, 3/4, 1
	NPT 1/4, 3/8, 1/2, 3/4, 1
	mit Einschraubverschraubung
	(Auswahl siehe S.7)
Elektr. Anschluss	Buchse M16, rund, 8-polig und
	Buchse D-Sub HD15, 15-polig
Zusätzlich bei Feldbus:	bei PROFIBUS DP:
	Buchse M12 5-polig oder D-Sub 9-polig
	bei DeviceNet/CANopen:
	Stecker M12 5-polig oder D-Sub 9-polig
Betriebsspannung	24V DC
Spannungstoleranz	±10%
Restwelligkeit	< 2%
Leistungsaufnahme	3,5 - 10 W, bei Feldbus: 4 -12,5 W
	(je nach Ausführung)
Ausgangssignal (Istwertausgabe)	0-5 V, 0-10 V, 0-20 mA oder 4-20 mA
Max. Strom Spannungsausg.	10 mA
Max. Bürde Stromausg.	600 Ω


²⁾ Index N: Durchflusswerte bezüglich 1,013 bar und 0°C, alternativ Index S: Durchflusswerte bezüglich 1,013 bar und 20°C

³⁾ bei senkrechter Einbaulage mit Durchfluss von oben nach unten beträgt die Messspanne 1:10

Technische Daten (Forts.)		
Digitale Kommunikation	RS232, Modbus RTU (über RS-Schn.)	Einbaulage horizontal oder vertikal
über Adapter möglich:	RS485, RS422 oder USB	Leuchtdiodenanzeige Zustandsanzeige für
	(siehe Zubehörtabelle auf S. 3)	(Default, andere Zuordnungen wählbar) 1. Power 3. Limit
Feldbusoption	PROFIBUS DP, DeviceNet, CANopen	2. Communication 4. Error
	(D-Sub HD15 bei Feldbus über Dichtkappe abgedeckt)	Binäreingänge drei 1. nicht zugeordnet (Default, andere Funktionen wählbar) 2. nicht zugeordnet
Schutzart	IP65	3. nicht zugeordnet
(mit angeschlossenen Kabeln)	" "	Binärausgänge zwei Relaisausgänge
Abmessungen	Siehe Zeichnungen S. 6	(Default, andere Funktionen wählbar) 1. Limit (Istwert erreicht nahezu Q _{Nenn})
Gesamtmasse (Beispiel Standardblock)	1,2 kg (Al) 3,0 kg (VA)	2. Error (z.B. Sensorbruch) Belastbarkeit: max. 60 V, 1 A, 60 VA


Druckverlustdiagramm des MFMs (bezl. Luft, bei 250µm Eingangsfilter)

Das Diagramm stellt beispielhaft die Druckverlustkurven bei Durchströmung mit Luft dar.

Zur Ermittlung des Druckverlustes eines anderen Gases muss zunächst auf den entsprechenden Luftdurchfluss umgerechnet und der beim anderen Gas verwendete Grundblock berücksichtigt werden.

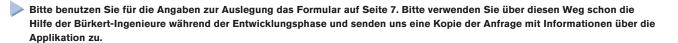
Funktionsprinzip der Messwerterfassung

Dieser Sensor arbeitet als Heißfilmanemometer im sogenannten CTA-Betriebsmodus (Constant Temperature Anemometer). Dabei sind zwei direkt im Medienstrom befindliche Widerstände mit präzise spezifiziertem Temperaturkoeffizienten sowie drei weitere Widerstände zu einer Messbrücke verschaltet.

Der erste Widerstand im Medienstrom (R_T) misst die Fluidtemperatur, der zweite, niederohmigere Widerstand (R_S) wird stets gerade soweit aufgeheizt, dass er auf einer festen, vorgegebenen Übertemperatur zur

Nenndurchflussbereiche typischer Gase

(Andere Gase auf Anfrage)

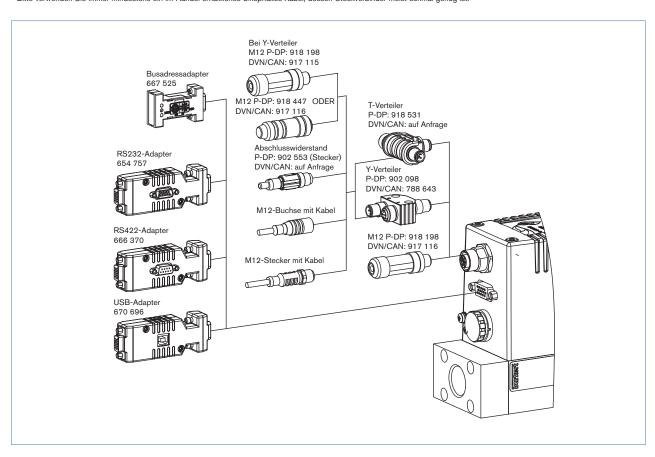

-		
Gas	Min. Q _{Nenn} [I _N /min]	Max. Q _{Nenn} [I _N /min]
Acetylen	20	975
Ammoniak	20	1250
Argon	20	1500
Kohlendioxid	20	800
Luft	20	2500
Methan	20	750
Propan	20	400
Sauerstoff	20	2500
Stickstoff	20	2500

Fluidtemperatur gehalten wird. Der dazu jeweils erforderliche Heizstrom ist ein Maß für die Wärmeabfuhr durch das strömende Gas und stellt die primäre Messgröße dar.

Eine adäquate Strömungskonditionierung innerhalb des MFM sowie die Kalibrierung mit hochwertigen Durchflussnormalen stellen sicher, dass aus dem Primärsignal die pro Zeiteinheit durchströmende Gasmenge mit hoher Genauigkeit abgeleitet werden kann.

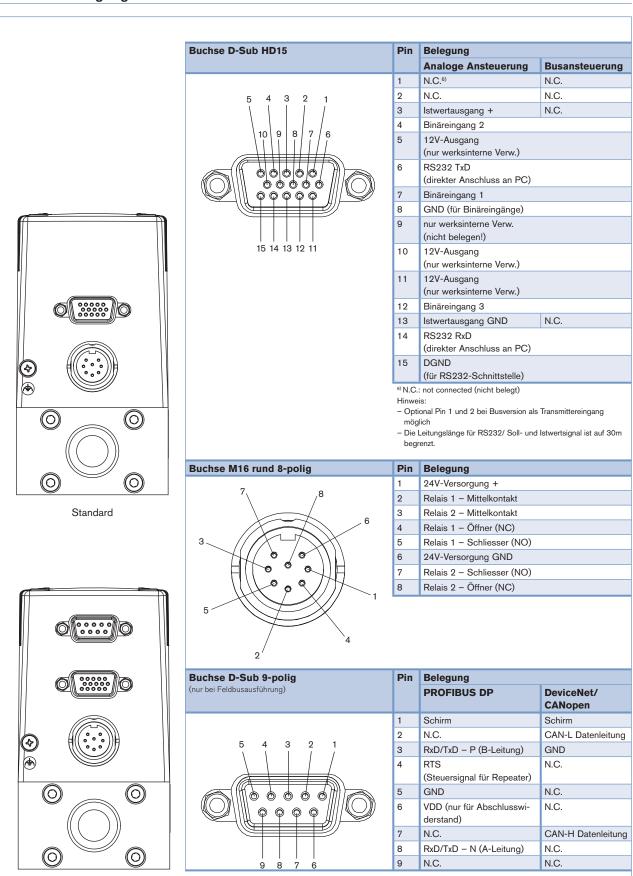
Hinweise zur Geräteauswahl

Entscheidend für die einwandfreie Funktion eines MFMs innerhalb der Anwendung sind die Medienverträglichkeit, der maximale Eingangsdruck und die richtige Wahl des Durchflussmessbereiches. Der Druckverlust über dem MFM ist abhängig von Nenndurchfluss und Betriebsdruck.

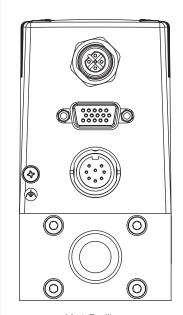


Bestell-Tabelle Zubehör

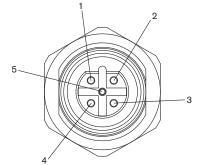
Artikel Bestel		Inummer
Anschlussstecker/-kabel		
Rundstecker M16 8-pol. (Lötanschluss)		918 299
Rundstecker M16 8-pol. mit 5 m Kabel, einseitig konfektioniert		787 733
Rundstecker M16 8-pol. mit 10 m Kabel, einseitig konfektioniert		787 734
Stecker D-Sub HD15 15-pol. mit 5 m Kabel, einseitig konfektioniert		787 735
Stecker D-Sub HD15 15-pol. mit 10 m Kabel, einseitig konfektioniert		787 736
Adapterzubehör 4)		
RS232-Adapter zum Anschluss eines PC in Verbindung mit einem Verlängerungskabel (Best.N	lr. 917039)	654 757
Verlängerungskabel für RS232 9-pol. Buchse/Stecker 2 m		917 039
RS422-Adapter (RS485-kompatibel)		666 370
USB-Adapter (Version 1.1, USB-Buchse Typ B)		670 696
USB-Anschlusskabel 2 m		772 299
Adapter für manuelle Busadresseinstellung (statt über SW)		667 525
Software MassFlowCommunicator		Download unter www.buerkert.com
Feldbuszubehör	PROFIBUS DP (B-codiert)	DeviceNet/ CANopen (A-codiert)
M12-Stecker gerade 5)	918 198	917 115
M12-Buchse gerade 5)	918 447	917 116
Y-Verteiler ⁵⁾	902 098	788 643
T-Verteiler	918 531	(auf Anfrage)
Abschluss-Widerstand	902 553	(auf Anfrage)
GSD-Datei (PROFIBUS), EDS-Datei (DeviceNet, CANopen)	Download unter v	www.buerkert.com


- ⁴⁾ Das Adapterzubehör dient der Inbetriebnahme und Diagnose und ist nicht zwingend für den Betrieb erforderlich.
 ⁵⁾ Die M12 Einzelsteckverbinder, wie hier aufgeführt, eignen sich aus Platzgründen nicht für deren gleichzeitige Verwendung auf derselben Seite des Y-Verteilers.
 Bitte verwenden Sie immer mindestens ein im Handel erhältliches umspritztes Kabel, dessen Steckverbinder meist schmal genug ist.

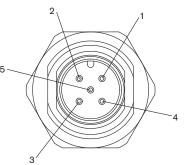
burkert


Anschlussbelegung

Feldbus D-SUB


burkert

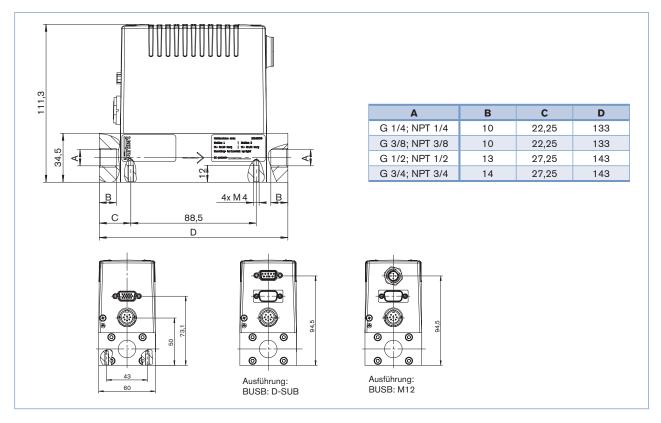
Anschlussbelegung (Fortsetzung)

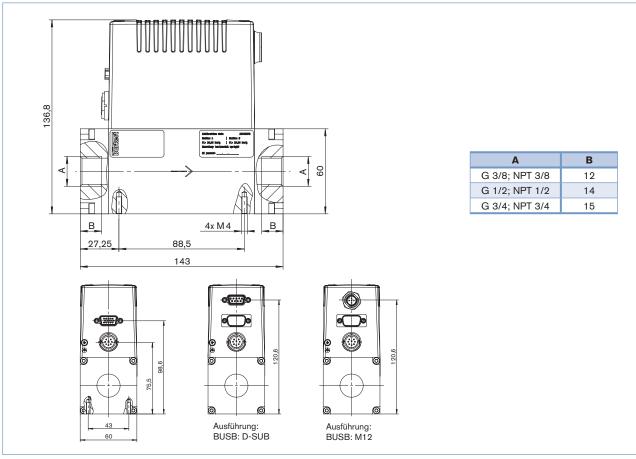


	0 00000	
♦		
0		9

M12 DeviceNet

DeviceNet/ CANopen – Stecker A-codiert M12	Pin	Belegung
	1	Schirm
	2	N.C. ⁷⁾
	3	DGND
2.	4	CAN_H
	5	CAN_L
	7) Opt	ional Belegung mit 24V DC möglich zur zus. Geräte-




Spannungsversorgung über diesen Stecker.

Die Spannungsversorgung des Rundsteckers M16 darf in diesem Fall nicht angeschlossen werden.

Abmessungen [mm]

MFC/MFM-Applikationen - Angebotsanfrage

▶ Bitte ausfüllen und an Ihr nächstgelegenes Bürkert Vertriebs-Center senden

Hinweis
Sie können die
Felder direkt In
der Datei aus-

Firma		Ansprechpartner		ausd
Kunden-Nr.		Abteilung		
Strasse		Tel./Fax		
PLZ-Ort		E-Mail		
MFC-Applikaton MFM-Applik	cation S	tückzahl	Erforderlicher Liefertermin	
Mediumsangaben				
Gasart (bzw. Gasanteile bei Gemischen)				
Dichte		kg/m³ ⁸⁾		
Medientemperatur		C .	F	
Feuchtegehalt		g/m³		
Abrasive Bestandteile/Festpartikel	nein	ja, folgende:		
Fluidische Daten				
Durchflussbereich Q _{nenn}		Min. I _N /min ⁸⁾ I _S /m	nin (slpm) ⁹⁾	
		Max.	Th .	
		\square cm $_{N}^{3}$ /min $^{8)}$ \square cm $_{S}$	3/min (sccm) 9)	
		\square $I_N/h^{(8)}$ \square $I_S/h^{(8)}$	9)	
Eingangsdruck bei Q_{nenn}^{10} $p_1 =$		oar(ü) ■		
Ausgangsdruck bei $\mathbf{Q}_{\mathrm{nenn}}$ \mathbf{p}_{2} =		oar(ü) ■		
Max. Eingangsdruck p _{1max}		oar(ü) ■		
MFC/MFM-Leitungsanschluss	ohne Einschraubve	rschraubung		
	1/4" G-Gewind	de (DIN ISO 228/1)	-Gewinde (ANSI B1.2)	
	3/8" G-Gewin	de (DIN ISO 228/1) 3/8" NPT	-Gewinde (ANSI B1.2)	
	1/2" G-Gewin	de (DIN ISO 228/1) 🔲 1/2" NPT	-Gewinde (ANSI B1.2)	
	3/4" G-Gewind	de (DIN ISO 228/1) 3/4" NPT-	-Gewinde (ANSI B1.2)	
	mit Einschraubvers	chraubung		
		mm Rohrleitung (Außen Ø)		
		Zoll Rohrleitung (Außen Ø)		
Einbaulage	horizontal, Ventil st	ehend (Standard) horizontal,	, Ventil liegend	
	vertikal, Durchfluss	nach oben vertikal, D	urchfluss nach unten	
Umgebungstemperatur		°C		
Werkstoffangaben				
Grundblock	Aluminium (eloxiert	Edelstahl		
Dichtwerkstoff	FKM	EPDM		
Elektrische Daten				
Signale für Sollwerteingang/	mit Normsignal		über Feldbus	
Istwertausgang	Sollwert	Istwert		
	0-5 V 0-20			-Sub
	☐ 0-10 V ☐ 4-20	mA 0-10 V 4-20 mA	☐ DeviceNet ☐ M ☐ CANopen	12
■ Bitte alle Druckwerte als Überdruck zum Atm			- La CANOPEII	
8) bei: 1,013 bar(a) und 0°C 9) bei: 1,013 bar(a)	und 20°C 10) ents	pricht dem Kalibrierdruck		
Klicken Sie bitte hier, um die für Sie zuständige Bürkert Niederlassung in Ihrer Nähe zu finden $\; o\;$ www.buerkert.com				
Bei speziellen Anforderungen	Änderungen vorbehalten			
beraten wir Sie gerne	© Christian Bürkert Gmb	H & Co. KG	1501/3_DE-de_0089	90705